

OHIO VALLEY ELECTRIC CORPORATION

3932 U. S. Route 23
P. O. Box 468
Piketon, Ohio 45661
740-289-7200

WRITER'S DIRECT DIAL NO:
740-289-7259

January 30, 2026

Submitted Electronically

Mr. John Logue, Director
Ohio Environmental Protection Agency
50 West Town Street, Suite 700
P.O. 1049
Columbus, OH 43216-1049

**Re: Ohio Valley Electric Corporation
Kyger Creek Station
Notification of CCR Rule Information Posting
Annual Certified CCR Dam and Dike (Surface Impoundment)
Inspection Report Posting**

Dear Mr. Logue:

As required by 40 CFR 257.106(g), the Ohio Valley Electric Corporation (OVEC) is providing notification to the State Director of the Ohio Environmental Protection Agency that a qualified professional engineer has completed the Annual CCR Dam and Dike (Surface Impoundment) Inspection for the 2025 operating year in accordance with 40 CFR 257.83(b) for OVEC's Kyger Creek Station. The inspection report has been placed in the facility's operating record as well as on the company's publicly accessible internet site.

This information can be viewed on OVEC's publicly accessible internet site at:
<http://www.ovec.com/CCRCompliance.php>

If you have any questions, or require any additional information, please call me at 740-289-7259.

Sincerely,

A handwritten signature in black ink that reads "Jeremy Galloway". The signature is fluid and cursive, with "Jeremy" on the top line and "Galloway" on the bottom line.

Jeremy Galloway
Environmental Specialist

JDG:zsh

**2025 CCR Rule – Surface Impoundments
Kyger Creek Dam/Dike Inspections**

Kyger Creek Generating Station
Cheshire, Ohio
Gallia County

January 19, 2026

Prepared for:

Ohio Valley Electric Corporation
Piketon, Ohio

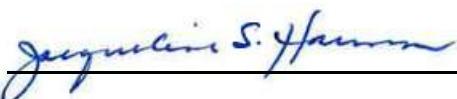
Prepared by:

Stantec Consulting Services Inc.
Cincinnati, Ohio

Sign-off Sheet

This document entitled 2025 CCR Rule – Surface Impoundments, Kyger Creek Dam/Dike Inspections was prepared by Stantec Consulting Services Inc. ("Stantec") for the account of Ohio Valley Electric Corporation (OVEC) (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule, and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use that a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by


(signature)

Caitlin Fanello, Civil Designer

Reviewed by

(signature)

Adam Sprague, P.E.

Reviewed by

(signature)

Jacqueline S. Harmon, P.E.

Table of Contents

1.0	OVERVIEW	1
2.0	DESCRIPTION OF KYGER CREEK IMPOUNDMENTS	2
2.1	BOILER SLAG POND	2
2.2	SOUTH FLY ASH POND.....	3
3.0	OBSERVATIONS	3
3.1	BOILER SLAG POND	4
3.1.1	Changes in Geometry Since Last Inspection (257.83(b)(2)(i)).....	4
3.1.2	Instrumentation (257.83(b)(2)(ii)).....	4
3.1.3	Impoundment Characteristics (257.83(b)(2)(iii, iv, v))	5
3.1.4	Visual Inspection (257.83(b)(2)(vi)).....	5
3.1.5	Changes that Affect Stability or Operation (257.83(b)(2)(vii)).....	7
3.2	SOUTH FLY ASH POND.....	7
3.2.1	Changes in Geometry Since Last Inspection (257.83(b)(2)(i)).....	7
3.2.2	Instrumentation (257.83(b)(2)(ii)).....	7
3.2.3	Impoundment Characteristics (257.83(b)(2)(iii, iv, v))	8
3.2.4	Visual Inspection (257.83(b)(2)(vi)).....	8
3.2.5	Changes that Affect Stability or Operation (257.83(b)(2)(vii)).....	9
4.0	SUMMARY OF FINDINGS.....	9
4.1	MAINTENANCE.....	10
4.1.1	Boiler Slag Pond	10
4.1.2	South Fly Ash Pond	10
4.2	MONITORING.....	11
4.3	DEFICIENCIES.....	11
5.0	REFERENCES	12

LIST OF APPENDICES

APPENDIX A **FIGURES**

APPENDIX B **REFERENCE DRAWINGS**

APPENDIX C **INSTRUMENTATION**

APPENDIX D **PHOTOGRAPHIC LOG**

**2025 CCR RULE – SURFACE IMPOUNDMENTS
KYGER CREEK DAM/DIKE INSPECTIONS**

Overview
January 19, 2026

1.0 OVERVIEW

Stantec Consulting Services Inc. (Stantec) performed an annual inspection of the existing coal combustion residuals (CCR) surface impoundments at the Kyger Creek Generating Station in Cheshire, Ohio on October 29, 2025.

This annual dam and dike inspection is intended to fulfill the requirements of 40 CFR 257.83(b) for the *Disposal of Coal Combustion Residuals from Electric Utilities* rule (CCR Rule) signed by the U.S. Environmental Protection Agency (EPA) Administrator on December 19, 2014, and published in the Federal Register on April 17, 2015.

Date performed:	October 29, 2025
Weather:	Cloudy to Partly Cloudy, 57°F - 61°F
Rainfall over previous 72 hours:	October 26, 2025 – 0.00 inch October 27, 2025 – trace October 28, 2025 – 0.00 inch October 29, 2025 – 0.15 inches

Precipitation data was collected by the National Centers for Environmental Information (NCEI), a service provided by the National Oceanic and Atmospheric Administration (NOAA), for Huntington 2.9 E, WV US (US1WVCB0002). Precipitation during the 72-hour period prior to the site visit was 0.15 inches. Rain was not observed during the site inspection.

Stantec's team that performed the fieldwork included:

- Adam Sprague, P.E., Senior Project Engineer
12 years of experience in water resources engineering, including levees/dams, infrastructure, and CCR storage facility design, closure, and operation.
- Caitlin Fanello, Civil Designer
1 year of experience in environmental and water resources engineering, including water quality analysis, hydraulic modeling, levees/dams, and CCR storage facility design and closure.

Fieldwork was coordinated with Paul Hutchins, Kyger Creek Station's landfill environmental manager and Dick Shouldis, Kyger Creek Station's Civil Coordinator. Mr. Hutchins tracks the maintenance needs and activities through the weekly and monthly inspections. Zachary Hammond of Ohio Valley Electric Corporation's (OVEC) Environmental Affairs group accompanied Stantec's personnel during the inspection.

**2025 CCR RULE – SURFACE IMPOUNDMENTS
KYGER CREEK DAM/DIKE INSPECTIONS**

Description of Kyger Creek Impoundments
January 19, 2026

2.0 DESCRIPTION OF KYGER CREEK IMPOUNDMENTS

The Kyger Creek Generating Station is a coal-combustion generating station located in Cheshire, Gallia County, Ohio. It is owned and operated by OVEC. The Kyger Creek Station began operating in 1955. It has five generating units with a total capacity of 1,086 megawatts.

This annual assessment included two CCR surface impoundments: the Boiler Slag Pond (BSP) and the South Fly Ash Pond (SFAP).

2.1 BOILER SLAG POND

The BSP is part of the Bottom Ash Pond Complex, located about 1,300 feet southwest of the power plant between State Route 7 and the Ohio River. The complex is bounded by State Route 7 to the west, a substation and plant road to the north, the Ohio River to the east, and Kyger Creek to the south. A station overview is included in Appendix A.

The Bottom Ash Pond Complex perimeter embankment is approximately 5,800 feet in length with a splitter dike about 875 feet long, dividing the complex into the BSP and the Clearwater Pond. The top of the perimeter embankment is approximately elevation 582 feet with a maximum height of 27 feet relative to adjacent topography (Stantec 2016a). It is registered with the Ohio Department of Natural Resources (ODNR) as a Class II dam, ID No. 8721-014.

Construction completed in 2023 divided the BSP into the low-volume wastewater treatment system (LWVTS) and the redefined BSP closure area. The LWVTS includes a primary and a secondary basin. A boiler slag handling system (BSHS) was constructed just north of the BSP footprint. Cross sections of the embankment show the upstream and downstream slopes are constructed at 2.5H:1V with a 10-foot-wide crest. In the area of the LWVTS, the top of the existing embankment was lowered to elevation 575 feet. Reference drawings are provided in Appendix B.

The old BSP outlet structure to the Clearwater Pond was removed. For the LWVTS, a 48-inch diameter high density polyethylene (HDPE) pipe was placed at about elevation 551.5 feet from the primary to the secondary basin. The secondary basin discharges to the Clearwater Pond through a 36-inch diameter HDPE pipe placed at about elevation 550.0 feet. The Clearwater Pond discharges through the existing 30-inch corrugated metal pipe (CMP) to the NPDES-permitted outfall into the Ohio River. Water levels within the remaining boiler slag pond closure area are maintained by pumping (Burns & McDonnell 2023).

The BSHS was installed as part of the facility's Effluent Limitation Guideline (ELG) compliance program. It became fully operational on March 24, 2023. Kyger Creek Station no longer sluices boiler slag directly to onsite ponds. Initial discharge from the LWVTS occurred on July 17, 2023 (OVEC 2023g, 2023h; OEPA 2023, 2022a, 2022b).

In May 2025, OVEC engaged a contractor to begin grading, moisture conditioning, excavation, and hauling of the CCRs to the onsite landfill. Construction will continue through the end of 2027 and will include removal of CCRs from the unit and removal of the splitter dike separating the BSP and the Clearwater Pond.

**2025 CCR RULE – SURFACE IMPOUNDMENTS
KYGER CREEK DAM/DIKE INSPECTIONS**

Observations
January 19, 2026

2.2 SOUTH FLY ASH POND

The SFAP is located about 500 feet west/northwest of the power plant. It is bounded to the east by State Route 7, the closed North Ash Pond to the north, a railroad line and plant road to the west, and a plant road and flue gas desulfurization (FGD) wastewater treatment plant to the south (Stantec 2016b). A station overview is included in Appendix A.

The SFAP perimeter embankment is approximately 6,750 feet in length and encompasses approximately 67.7 acres. The top of the dike is located at approximately elevation 590 feet with a maximum height of 40 feet relative to adjacent topography. Cross sections show the upstream slopes are constructed at 1.75H:1V and the downstream slopes are 2.5H:1V with a 10-foot-wide crest (Stantec 2016b). It is registered with ODNR as a Class II dam, ID No. 8721-013.

The SFAP historically received process water for settling and storage of CCRs. Sluicing of fly ash to the pond ceased in September 2022, reducing inflows from plant sumps, coal pile runoff, and other miscellaneous flows (AEPSC 2022). Flows were historically conveyed to the SFAP by a 42-inch by 39-inch concrete riser structure located in the southeastern corner. No flows were observed the day of the site visit.

As part of the ELG compliance construction for the LVWTS, piping was installed connecting the coal pile runoff pond and the LVWTS. The piping crosses State Route 7 and is installed in the eastern dike of the SFAP, crossing back to the station near the northern end of the eastern dike. See Appendix B for reference drawings. A segment of piping is also shown placed in the southern dike to the fly ash handling area.

Outflow to Kyger Creek is controlled through a 30-inch diameter CMP located on the southwestern side.

In May 2025, OVEC engaged a contractor to begin lowering the operational pool of the SFAP and performing grading and moisture conditioning of the CCRs in preparation for construction of a final cover system. Construction will continue through the end of 2027 and will include completion of the final cover system, stormwater drainage improvements, and modification of the west and south perimeter dikes in coordination with ODNR.

3.0 OBSERVATIONS

Dam and embankment inspections were conducted in general accordance with 257.83(b) to ensure that the design, construction, operation, and maintenance of the CCR unit is consistent with recognized and generally accepted good engineering standards. The inspection at a minimum included:

1. A review of available information regarding the status and condition of the CCR unit, including, but not limited to, files available in the operating record (e.g., CCR unit design and construction information required by 40 CFR 257.73(c)(1) and 257.74(c)(1), previous periodic structural stability assessments required under 40 CFR 257.73(d) and 257.74(d), the results of inspections by a qualified person, and results of previous annual inspections),

**2025 CCR RULE – SURFACE IMPOUNDMENTS
KYGER CREEK DAM/DIKE INSPECTIONS**

Observations
January 19, 2026

2. A visual inspection of the CCR unit to identify signs of distress or malfunction of the CCR unit and appurtenant structures, and
3. A visual inspection of any hydraulic structures underlying the base of the CCR unit or passing through the dike of the CCR unit for structural integrity and continued safe and reliable operation.

3.1 BOILER SLAG POND

3.1.1 Changes in Geometry Since Last Inspection (257.83(b)(2)(i))

The geometry of the surface impoundment has remained essentially unchanged since the last inspection. The operational pool continues to be maintained at a low elevation to support closure by removal construction activities.

3.1.2 Instrumentation (257.83(b)(2)(ii))

Applied Geology and Environmental Science, Inc. (AGES) of Clinton, Pennsylvania manages the groundwater monitoring network at the Kyger Creek Station for OVEC. Piezometer data for the station was provided by AGES.

Sixteen piezometers/monitoring wells are associated with the BSP. Locations of the instruments are shown on excerpts from the respective reports in Appendix C (AGES 2020, 2016). The maximum recorded readings for each location since the previous inspection are shown in Table 1.

Table 1. BSP Maximum Piezometer Readings within the Past Year

Instrument	Installation Date	Maximum Reading (ft)	Date of Reading
KC-1015	8/31/2010	545.13	6/19/2025
KC-1016	9/8/2010	541.91	10/29/2025
KC-1017	8/30/2010	545.90	2/26/2025
KC-1018	9/7/2010	542.83	2/26/2025
KC-1021 ¹	8/26/2010	--	--
KC-1022	9/1/2010	541.20	2/26/2025
KC-15-01	8/5/2015	543.50	6/19/2025
KC-15-02	8/7/2015	544.45	6/19/2025
KC-15-03	8/12/2015	545.74	6/19/2025
KC-15-04	8/12/2015	540.17	6/19/2025
KC-15-05a	8/24/2022	540.26	6/19/2025
KC-15-06	8/18/2015	540.03	6/19/2025
KC-15-07	8/11/2015	540.14	6/19/2025
KC-15-08	8/10/2015	540.24	6/19/2025
KC-19-27	4/5/2019	540.57	10/29/2025

**2025 CCR RULE – SURFACE IMPOUNDMENTS
KYGER CREEK DAM/DIKE INSPECTIONS**

Observations
January 19, 2026

KC-19-28	4/4/2019	539.87	6/19/2025
KC-19-29	4/3/2019	539.86	6/19/2025

Notes:

1. Piezometer KC-1021 could not be located during construction activities in 2023.

3.1.3 Impoundment Characteristics (257.83(b)(2)(iii, iv, v))

Table 2 summarizes the BSP impoundment characteristics since the previous annual inspection.

Table 2. Summary of BSP Impoundment Characteristics

Characteristics ²	2025 Values ¹
Approximate Minimum Depth (Elevation) of impounded water	0.0 ft. (540.5 ft.)
Approximate Maximum Depth (Elev.) of impounded water	1.7 ft. (538.8 ft.) ³
Approximate Current Depth (Elev.) of impounded water	1.7 ft. (538.8 ft.) ³
Approximate Minimum Depth (Elev.) of CCR	0.0 ft. (540.5 ft.) ⁴
Approximate Maximum Depth (Elev.) of CCR	38.8 ft. (579.3 ft.) ⁴
Approximate Current Depth (Elev.) of CCR	Varies (0 to 38.8 ft.)
Storage Capacity of impounding structure at the time of the inspection ⁵	839,100 cy
Approximate volume of impounded water at the time of the inspection ⁶	<1,000 cy
Approximate volume of CCR at the time of the inspection	421,800 cy ⁷

Notes:

1. All values in feet (ft) or cubic yards (cy). Elevation (Elev.) is shown in feet (NAVD88).
2. Excludes LVWTS area unless noted.
3. Located within an internal stormwater management channel.
4. Based on base elevation of 540.5 ft and including the LVWTS footprint (Stantec 2016a; AEPSC 2016b).
5. Assumes water impounding within the LVWTS and the remaining BSP footprint to the minimum crest elevation.
6. Based on base elevation of 540.5 ft and neglecting the LVWTS footprint.
7. Volume removed since previous inspection based on number of truckloads hauled to landfill 6/30/2025 through 10/28/2025.

The primary basin was designed for a normal pool elevation of 552.50 feet, creating a storage volume of 13.74 acre-feet (22,200 cy). The secondary basin was designed for a normal pool elevation of 551.50 feet, creating a storage volume of 50.56 acre-feet (81,600 cy) (Burns & McDonnell 2023).

3.1.4 Visual Inspection (257.83(b)(2)(vi))

The visual inspection of the BSP and appurtenant structures was conducted to identify actual or potential structural weaknesses or a condition disrupting or that has potential to disrupt the operation and safety of the impoundment. Specific items observed included upstream and downstream slopes, crest of the

**2025 CCR RULE – SURFACE IMPOUNDMENTS
KYGER CREEK DAM/DIKE INSPECTIONS**

Observations

January 19, 2026

embankment dam and dike, and inlet and outlet structures. Appendix A includes a plan view and table with inspection points identified in the field. Appendix D includes a photographic log of the conditions.

The visual inspection began with observations of the perimeter embankment and splitter dike. In general, the upstream and downstream embankment slopes appear to be in good condition. The following observations were made:

- In general, the exterior slopes are mowed, vegetated, and uniform along the northwest and southwest perimeter of the pond (Photos 2, 7, and 16; Appendix D).
- Surface erosion and erosion rills are noted, particularly as the material changes from the road surfacing to the grassy slopes near the crest along the perimeter embankment (Points 1, 3, and 4, Appendix A; Photos 1, 4, 5, 15, 17, 18, and 19, Appendix D).
- A minor depression or surface irregularity was noted mid-slope of the northwest exterior perimeter embankment (Point 2, Appendix A; Photo 2, Appendix D).
- Erosion rills were noted on both sides of the Splitter Dike near its crest and along the slopes of the dike (Point 12, Appendix A; Photos 11 through 14, Appendix D).
- Vegetation is thin and areas of exposed earth were noted in areas along the perimeter embankment (Points 5, 6, and 9, Appendix A; Photos 6, 8, and 16, Appendix D). Some instances appear to be a result of tracked equipment traversing the slope.

The splitter dike has an established operational road with a boiler slag surface. Monitoring wells were noted during the site visit.

No operational flows were noted during the site visit into the boiler slag pond closure area. Ponded water was limited to an area at the toe of the LVWTS within the BSP closure area (Photo 13, Appendix D).

The perimeter embankment along the clearwater pond was included in the 2025 inspection, although it is not yet included as part of the BSP. The splitter dike will be removed as a part of the BSP closure project as late as 2027, at which point the embankment will function as the perimeter embankment of the BSP. The following observations were made:

- The exterior slopes are mowed, vegetated, and uniform along the northwest, southwest, and southeast perimeter of the clearwater pond (Photo 9, Appendix D).
- Trees and woody vegetation are growing along the toe of the embankment and Kyger Creek (Photo 9, Appendix D).
- The topography is difficult to discern along the exterior toe of the southeast perimeter. Water may pond at the toe following rain events. Ground was firm and no standing water was observed at the exterior toe (Point 7, Appendix A; Photo 10, Appendix D).

2025 CCR RULE – SURFACE IMPOUNDMENTS
KYGER CREEK DAM/DIKE INSPECTIONS

Observations
January 19, 2026

3.1.5 Changes that Affect Stability or Operation (257.83(b)(2)(vii))

Based on discussions with OVEC representatives and observations made during the field inspection, there are no changes to the BSP impoundment that would affect its stability or future operational needs.

3.2 SOUTH FLY ASH POND

3.2.1 Changes in Geometry Since Last Inspection (257.83(b)(2)(i))

The SFAP dike has remained relatively unchanged since the last inspection. Reference drawings are provided in Appendix B.

3.2.2 Instrumentation (257.83(b)(2)(ii))

Nineteen piezometers/monitoring wells are associated with the SFAP. Locations of the instruments are shown on excerpts from the respective reports in Appendix C (AGES 2020, 2016). Table 3 below summarizes the maximum reading since the last annual inspection.

Table 3. SFAP Maximum Piezometer Readings within the Past Year

Instrument	Installation Date	Maximum Reading (ft)	Date of Reading
KC-1003	8/19/2010	582.25	11/25/2025
KC-1004	8/26/2010	550.05	10/29/2025
KC-1007	8/17/2010	581.39	2/26/2025
KC-1008	8/24/2010	551.41	6/19/2025
KC-1011 ¹	8/23/2010	--	--
KC-1012 ²	9/9/2010	--	--
KC-15-09	9/15/2015	541.16	2/26/2025
KC-15-10	9/16/2015	541.62	6/19/2025
KC-15-11	8/20/2015	541.95	6/19/2025
KC-15-12	9/17/2015	542.17	6/19/2025
KC-15-13	9/1/2015	542.25	6/19/2025
KC-15-14	8/20/2015	542.10	6/19/2025
KC-15-15	9/2/2015	541.86	6/19/2025
KC-15-16	9/3/2015	541.03	2/26/2025
KC-15-17	9/3/2015	541.80	6/19/2025
KC-15-18	8/25/2015	541.54	6/19/2025
KC-15-19a ³	8/25/2022	541.75	6/19/2025
KC-15-20	8/27/2015	541.30	6/19/2025
KC-15-21	8/27/2015	541.48	6/19/2025
KC-15-22	9/10/2015	541.67	6/19/2025

**2025 CCR RULE – SURFACE IMPOUNDMENTS
KYGER CREEK DAM/DIKE INSPECTIONS**

Observations
January 19, 2026

Notes:

1. KC-1011 was damaged during construction activities and could not be sampled.
2. KC-1012 could not be located or sampled.
3. KC-15-19 noted as damaged/could not be sampled in June 2022. Replaced with well KC-15-19a August 2022 (AGES, 2023a).

3.2.3 Impoundment Characteristics (257.83(b)(2)(iii, iv, v))

The SFAP is an inactive CCR surface impoundment that ceased wet disposal in 1986 (AEPSC 2016b). Table 4 summarizes the impoundment characteristics since the previous annual inspection.

Table 4. Summary of SFAP Impoundment Characteristics

Characteristics^{2,3}	2025 Values¹
Approximate Minimum Depth (Elev.) of impounded water	0 ft. (561 ft.)
Approximate Maximum Depth (Elev.) of impounded water	1 ft. (560 ft.)
Approximate Current Depth (Elev.) of impounded water	Varies (0 to 1 ft.)
Approximate Minimum Depth (Elev.) of CCR	~10 ft. (560 ft.)
Approximate Maximum Depth (Elev.) of CCR	~ 44 ft. (594 ft.)
Approximate Current Depth (Elev.) of CCR	Varies (10-44 ft.)
Storage Capacity of impounding structure at the time of the inspection	4,037,700 cy
Approximate volume of impounded water at the time of the inspection	<1,000 cy
Approximate volume of CCR at the time of the inspection	2,772,000 cy

Notes:

1. All values in feet (ft) or cubic yards (cy). Elevation (Elev.) is shown in feet (NAVD88).
2. Pool elevation 561.0 feet based on survey from November 2025. Remaining pool is a sump for construction dewatering.
3. Base elevation of the SFAP assumed elevation 550 feet from design drawings (Stantec 2016b; AEPSC 2016c).

3.2.4 Visual Inspection (257.83(b)(2)(vi))

The visual inspection of the SFAP and appurtenant structures was conducted to identify actual or potential structural weaknesses or a condition disrupting or that has potential to disrupt the operation and safety of the impoundment. Specific items observed included upstream and downstream slopes, crest of the embankment dam/dike, and inlet and outlet structures. Appendix A includes a plan view and table with inspection points identified in the field. Appendix D includes a photographic log of the conditions.

The following observations were made:

- In general, the downstream slopes appear to be in good condition with established, mowed grass and limited woody vegetation (Photos 21, 23, 27, 28, 34, and 41, Appendix D).

**2025 CCR RULE – SURFACE IMPOUNDMENTS
KYGER CREEK DAM/DIKE INSPECTIONS**

Summary of Findings
January 19, 2026

- Limited free water is visible within the impoundment due to dewatering for construction (Photo 24, Appendix D).
- Historic sluice lines are located along the southern and eastern dikes (Photos 35, 38, and 39, Appendix D).
- No operational flow was evident at the time of the inspection at the inlet to the SFAP at the southeastern corner.
- A uniform depression in the northwest slope was documented along the length of that slope (Points 12, 13, 16, 17, and 18, Appendix A; Photos 23, 27, and 28, Appendix D).
- Surficial erosion and bare spots are observed at multiple locations along the exterior slope of the perimeter embankments (Points 11, 14, 15, 19, 21, 25, 26, and 27, Appendix A; Photos 22, 25, 26, 29, 31, 37, 38, and 39, Appendix D).
- Animal burrows are observed in the perimeter embankment surrounding the pond at two locations (Points 24 and 28, Appendix A; Photos 36 and 40, Appendix D).
- Bolts are missing on the metal cover to a piezometer at the crest of the northwest embankment at the southern corner, potentially exposing the piezometer to moisture from the ground surface (Point 20 Appendix A; Photo 30, Appendix D).
- The ground surface metal cover to a piezometer at the crest of the perimeter embankment at the west corner has been damaged, exposing the piezometer to moisture from the ground surface (Point 22, Appendix A; Photo 32, Appendix D).
- The splitter dike embankment shows no signs of rutting, erosion or instability (Photo 41, Appendix D).
- The ground surface metal cover to a piezometer at the crest of the splitter dike located under a steel plate appears to be damaged, exposing the piezometer to moisture from the ground surface (Point 29, Appendix A; Photo 42, Appendix D).

3.2.5 Changes that Affect Stability or Operation (257.83(b)(2)(vii))

Based on discussions with OVEC representatives and observations made during the field inspection, there are no changes to the SFAP impoundment that would affect its stability or future operational needs. Locations where piping enters and exits the embankment dike should be included in monitoring activities to note any changes.

4.0 SUMMARY OF FINDINGS

The following recommendations regarding maintenance, monitoring, and deficiencies are offered for the Kyger Creek Station's two CCR surface impoundments.

**2025 CCR RULE – SURFACE IMPOUNDMENTS
KYGER CREEK DAM/DIKE INSPECTIONS**

Summary of Findings
January 19, 2026

4.1 MAINTENANCE

4.1.1 Boiler Slag Pond

Operational Issues:

- Maintain the vegetation along the interior and exterior slopes of the BSP. Address the erosion on the exterior slope as needed to maintain the integrity of the ponds.
- Continue to conduct field surveys to measure current topography and compare to design geometry. Reroute surface to conform to design if needed. Further engineering evaluation of slope stability may be warranted, if deformations, steepened slopes, or sloughing indicate potential for significant instabilities.
- Observe the exterior toe of the Clearwater Pond following heavy rain events to check for standing water. Reroute to promote drainage away from the toe of embankment as necessary.

Maintenance Issues:

- Reroute and repair erosion gullies as noted. Reseed barren areas noted on the exterior slope and establish uniform vegetation coverage in areas of need.

4.1.2 South Fly Ash Pond

Operational Issues:

- Maintain the vegetation along the interior and exterior slopes of the SFAP. Address the erosion on the exterior slope as needed to maintain the integrity of the ponds.
- Continue to conduct field surveys to measure current topography and compare to design geometry. Reroute surface to conform to design if needed. Further engineering evaluation of slope stability may be warranted, if deformations, steepened slopes, or sloughing indicate potential for significant instabilities.
- Monitor the seepage blankets and exterior slopes on perimeter embankments for wet areas, soft spots, or signs of instability. In addition, continue to monitor the area where the LVWTS piping enters and exits the SFAP embankment for signs of seepage around the piping.

Maintenance Issues:

- Reroute and repair erosion gullies as noted. Reseed barren areas noted on the exterior slope and establish uniform vegetation coverage in areas of need.
- Backfill the documented animal burrows with compacted native soils or a mud-pack of soil and cement, ensuring all voids are filled and the entrance(s) are properly sealed.
- Repair the sloughing surface on the west corner of the pond near the access road.

**2025 CCR RULE – SURFACE IMPOUNDMENTS
KYGER CREEK DAM/DIKE INSPECTIONS**

Summary of Findings
January 19, 2026

4.2 MONITORING

EPA regulations require weekly and monthly inspections of the CCR surface impoundments facility, which are performed by qualified plant personnel. These inspections include observations for actual or potential structural weaknesses or other conditions that may disrupt the operation or safety of the CCR unit. The discharge from outlets of hydraulic structures under the base of the surface impoundment or through the dike of the CCR unit is observed for abnormal discoloration or discharge of debris or sediment. Available 2025 weekly and monthly inspection reports were provided by plant personnel for review (OVEC 2025a through 2025e).

Per 40 CFR 257.83(a)(iii), instrumentation should be monitored at least every 30 days by a qualified person. AGES performs a monthly inspection/inventory of the instrumentation at the BSP and SFAP. Daily field activity updates are provided to OVEC and Stantec at a frequency less than 30 days, documenting instrument condition and sampling events (AGES 2024b).

Annual inspections by a qualified professional engineer are required under the EPA regulations. The dam and dike inspections for 2015 through 2022 were performed by American Electric Power Service Corporation (AEPSC) (AEPSC 2015, 2016a, 2017 through 2022). Copies are available on OVEC's publicly accessible CCR website (OVEC 2023f). Stantec performed the 2023 and 2024 inspections (Stantec 2024, 2025).

Special or more frequent monitoring of the facilities other than that already being performed should not be necessary unless conditions change.

4.3 DEFICIENCIES

No structural deficiencies in the dam/dike structures were observed during the 2025 annual inspection.

**2025 CCR RULE – SURFACE IMPOUNDMENTS
KYGER CREEK DAM/DIKE INSPECTIONS**

References
January 19, 2026

5.0 REFERENCES

American Electric Power Service Corporation. (2022). 2022 Annual Dam and Dike Inspection Report. Bottom Ash Pond Complex. South Fly Ash Pond. Kyger Creek Plant. Ohio Valley Electric Corporation (OVEC). Gallia County, Ohio. October 26. GERS-22-030.

American Electric Power Service Corporation. (2021). 2021 Annual Dam and Dike Inspection Report. Bottom Ash Pond Complex. South Fly Ash Pond. Kyger Creek Plant. Ohio Valley Electric Corporation (OVEC). Gallia County, Ohio. November 19. GERS-21-074.

American Electric Power Service Corporation. (2020). 2020 Annual Dam and Dike Inspection Report. Bottom Ash Pond Complex. South Fly Ash Pond. Kyger Creek Plant. Ohio Valley Electric Corporation (OVEC). Gallia County, Ohio. October 23. GERS-20-030.

American Electric Power Service Corporation. (2019). 2019 Annual Dam and Dike Inspection Report. Bottom Ash Pond Complex. South Fly Ash Pond. Kyger Creek Plant. Ohio Valley Electric Corporation (OVEC). Gallia County, Ohio. October 28. GERS-19-028.

American Electric Power Service Corporation. (2018). 2018 Annual Dam and Dike Inspection Report. Bottom Ash Pond Complex. South Fly Ash Pond. Kyger Creek Plant. Ohio Valley Electric Corporation (OVEC). Gallia County, Ohio. September 26. GERS-18-045.

American Electric Power Service Corporation. (2017). 2017 Annual Dam and Dike Inspection Report. Bottom Ash Pond Complex. South Fly Ash Pond. Kyger Creek Plant. Ohio Valley Electric Corporation (OVEC). Gallia County, Ohio. August 16. GERS-17-025.

American Electric Power Service Corporation. (2016a). 2016 Annual Dam and Dike Inspection Report. Bottom Ash Pond Complex. South Fly Ash Pond. Kyger Creek Plant. Ohio Valley Electric Corporation (OVEC). Gallia County, Ohio. November 11. GERS-16-152.

American Electric Power Service Corporation. (2016b). History of Construction. CFR 257.73(c)(1). Boiler Slag Pond. Kyger Creek Station. Cheshire, Ohio. Ohio Valley Electric Corporation. October. GERS-16-137.

American Electric Power Service Corporation. (2016c). History of Construction. CFR 257.73(c)(1). South Fly Ash Pond. Kyger Creek Station. Cheshire, Ohio. Ohio Valley Electric Corporation. October. GERS-16-138.

American Electric Power Service Corporation. (2015). 2015 Dam and Dike Inspection Report. Bottom Ash Complex. South Fly Ash Pond. GERS-15-020. Kyger Creek Station. Gallipolis, Ohio. Geotechnical Engineering. Columbus, Ohio. November 5.

Applied Geology and Environmental Science, Inc. (AGES) (2024a). Coal Combustion Residuals Regulation. 2023 Groundwater Monitoring and Corrective Action Report. Ohio Valley Electric Corporation. Kyger Creek Station. Cheshire, Ohio. January.

Applied Geology and Environmental Science, Inc. (AGES) (2024b). Daily Field Activities Update. Kyger Creek, Cheshire, Ohio. Ohio Valley Electric Corporation. Project No. 2023041. January through December.

**2025 CCR RULE – SURFACE IMPOUNDMENTS
KYGER CREEK DAM/DIKE INSPECTIONS**

References

January 19, 2026

Applied Geology and Environmental Science, Inc. (AGES) (2023). Coal Combustion Residuals Regulation. 2022 Groundwater Monitoring and Corrective Action Report. Ohio Valley Electric Corporation. Kyger Creek Station. Cheshire, Ohio. January.

Applied Geology and Environmental Science, Inc. (AGES) (2020). Coal Combustion Residuals Regulation. Assessment of Corrective Measures Report. Boiler Slag Pond (BSP). Ohio Valley Electric Corporation. Kyger Creek Station. Cheshire, Ohio. Revision 1.0. November.

Applied Geology and Environmental Science, Inc. (AGES) (2016). Coal Combustion Residuals Regulation. Monitoring Well Installation Report. Ohio Valley Electric Corporation. Kyger Creek Station. Cheshire, Gallia County, Ohio. August.

Burns & McDonnell (2023). Kyger Creek Generating Station. Bottom Ash Pond (LWVTS Basins) – Dam Modification Report. File #8721-014. Ohio Valley Electric Corporation. CCR/ELG Compliance Project. Project No. 126371. Revision 4. January 31.

Burns & McDonnell (2022). CCR/ELG Project. Contract 8125. BSHS-LWVTS Modifications and Site Finishing. OVEC/IKEC. Kyger Creek Generating Station. Cheshire, Ohio. 2021. Project No. 126371. Revision 2. June 27. Issued for Construction.

Ohio Environmental Protection Agency (2024). eDocument Search (<https://edocpub.epa.ohio.gov/publicportal/edochome.aspx>).

Ohio Environmental Protection Agency (2022a). Letter from Division of Surface Water. Re: Ohio Valley Electric Corp., Kyger Creek. Permit-Long Term. Approval. Surface Water Permit to Install. Gallia. DSWPTI1439236. eDocument ID 1720855. January 28. Wastewater Redirect.

Ohio Environmental Protection Agency (2022b). Letter from Division of Surface Water. Re: Ohio Valley Electric Corp., Kyger Creek. Permit-Long Term. Approval. Surface Water Permit to Install. Gallia. DSWPTI1470917. eDocument ID 1708686. January 10. Wastewater Redirect Piping.

Ohio Valley Electric Corporation (2025a). Kyger Creek Plant. Monthly Photograph Presentation. South Fly Ash Pond. Bottom Ash Pond. Clearwater Pond. November 2024 through October 2025.

Ohio Valley Electric Corporation (2025b). “Kyger Creek Station. Dam/Dike Observation Checklist.” Fly Ash Pond, Bottom Ash Pond. Clear Water Pond. November 2024 through October 2025 monthly reports.

Ohio Valley Electric Corporation (2025c). “7-Day Inspection Checklist. Kyger Creek Plant. Boiler Slag/Bottom Ash Pond.” Weekly reports for November 7, 2024 to October 30, 2025.

Ohio Valley Electric Corporation (2025d). “7-Day Inspection Checklist. Kyger Creek Plant. Clearwater Pond.” Weekly reports for November 7, 2024 to October 30, 2025.

Ohio Valley Electric Corporation (2024e). “7-Day Inspection Checklist. Kyger Creek Plant. Fly Ash Pond.” Weekly reports for November 7, 2024 to October 30, 2025.

Ohio Valley Electric Corporation (2024f). CCR Rule Compliance Data and Information. Kyger Creek Station. (<https://www.ovec.com/CCRKyger.php>). Accessed October 23.

**2025 CCR RULE – SURFACE IMPOUNDMENTS
KYGER CREEK DAM/DIKE INSPECTIONS**

References

January 19, 2026

Ohio Valley Electric Corporation (2023a). Letter to Jack Knapp, Division of Surface Water, Ohio Department of Environmental Protection Agency, Southeast District Office from John Markley, OVEC. Notification per Kyger Creek NPDES Permit, Part II, Section AA(3), Lined Low Volume Waste Treatment (LWWTS) System Operational Status. June 7. eDocument ID 2386086.

Ohio Valley Electric Corporation (2023b). Letter to Jack Knapp, Division of Surface Water, Ohio Department of Environmental Protection Agency, Southeast District Office from J. Michael Brown, OVEC. Ohio Valley Electric Corporation. Kyger Creek Station. NPDES Permit No. 0IB00005*TD. Initial Discharge from Low Volume Waste Treatment System Notification. July 25. eDocument ID 2497428.

Stantec Consulting Services Inc. (2023a). Notification of Intent to Close – CCR Surface Impoundment. EPA CCR Rule: 40 CFR §257.102(g). Boiler Slag Pond (CCR Unit). OVEC Kyger Creek Station. October 12.

Stantec Consulting Services Inc. (2023b). Notification of Intent to Close – CCR Surface Impoundment. EPA CCR Rule: 40 CFR §257.102(g). South Fly Ash Pond (CCR Unit). OVEC Kyger Creek Station. October 12.

Stantec Consulting Services Inc. (2023c). 2023 CCR Rule – Surface Impoundments Kyger Creek Dam/Dike Inspections. Kyger Creek Generating Station. Cheshire, Ohio. January 19.

Stantec Consulting Services Inc. (2016a). Initial Structural Stability Assessment. Kyger Creek Station. Boiler Slag Pond. Cheshire, Gallia County, Ohio. October 17.

Stantec Consulting Services Inc. (2016b). Initial Structural Stability Assessment. Kyger Creek Station. South Fly Ash Pond. Cheshire, Gallia County, Ohio. October 17.

APPENDIX A

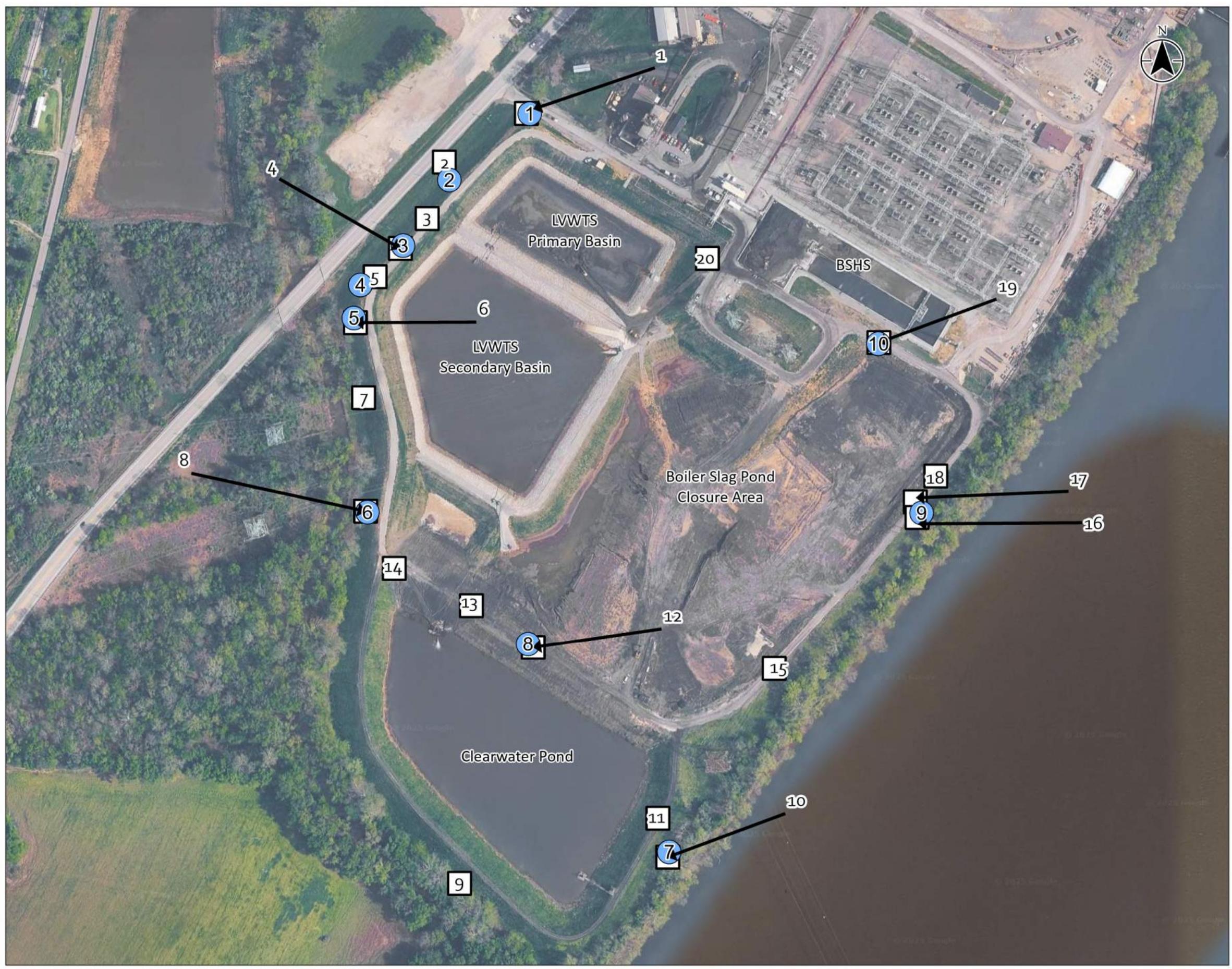
Figures

OVEC IKEC
Ohio Valley Electric Corporation Indiana-Kentucky Electric Corporation

Stantec

0 1,000 2,000 Feet
1:14,400 (At original document size of 11x17)

Notes


1. Coordinate System: NAD 1983 StatePlane Ohio South FIPS 3402 Feet
2. Background: Google Earth
3. Ortho-Imagery represents conditions as of April 2025.

Project Location
Kyger Creek Station
Galla County, OH
Prepared by ANP on 1/8/2026 4:04 PM
Technical Review by JS on 1/8/2026 4:04 PM
Independent Review by JSH on 1/8/2026 4:04 PM

Client/Project
Ohio Valley Electric Corporation
Kyger Creek Station

Figure No.
1
Title
2025 Annual CCR Facility Inspections - Station Overview

OVEC IKEC
Ohio Valley Electric Corporation Indiana-Kentucky Electric Corporation

Stantec

Legend

- Photo Location
- 2025 Inspection Locations

0 200 400
Feet
1:3,000 (At original document size of 11x17)

Notes

- Coordinate System: NAD 1983 StatePlane Ohio South FIPS 3402 Feet
- Background: Google Earth
- Ortho-Imagery represents conditions as of April 2025.

Project Location
Kyger Creek Station
Gallia County, OH
Prepared by ANP on 1/8/2026 1:21 PM
Technical Review by JS on 1/8/2026 1:21 PM
Independent Review by JSH on 1/8/2026 1:21 PM

Client/Project
Ohio Valley Electric Corporation
Boiler Slag Pond

Figure No.
2
Title
2025 Annual CCR Surface Impoundment Inspection

OVEC IKEC
Ohio Valley Electric Corporation Indiana-Kentucky Electric Corporation

Stantec

0 200 400
Feet
1:3,600 (At original document size of 11x17)

Project Location
Kyger Creek Station
Gallia County, OH
Prepared by ANP on 1/8/2026 1:21 PM
Technical Review by JS on 1/8/2026 1:21 PM
Independent Review by JSH on 1/8/2026 1:21 PM

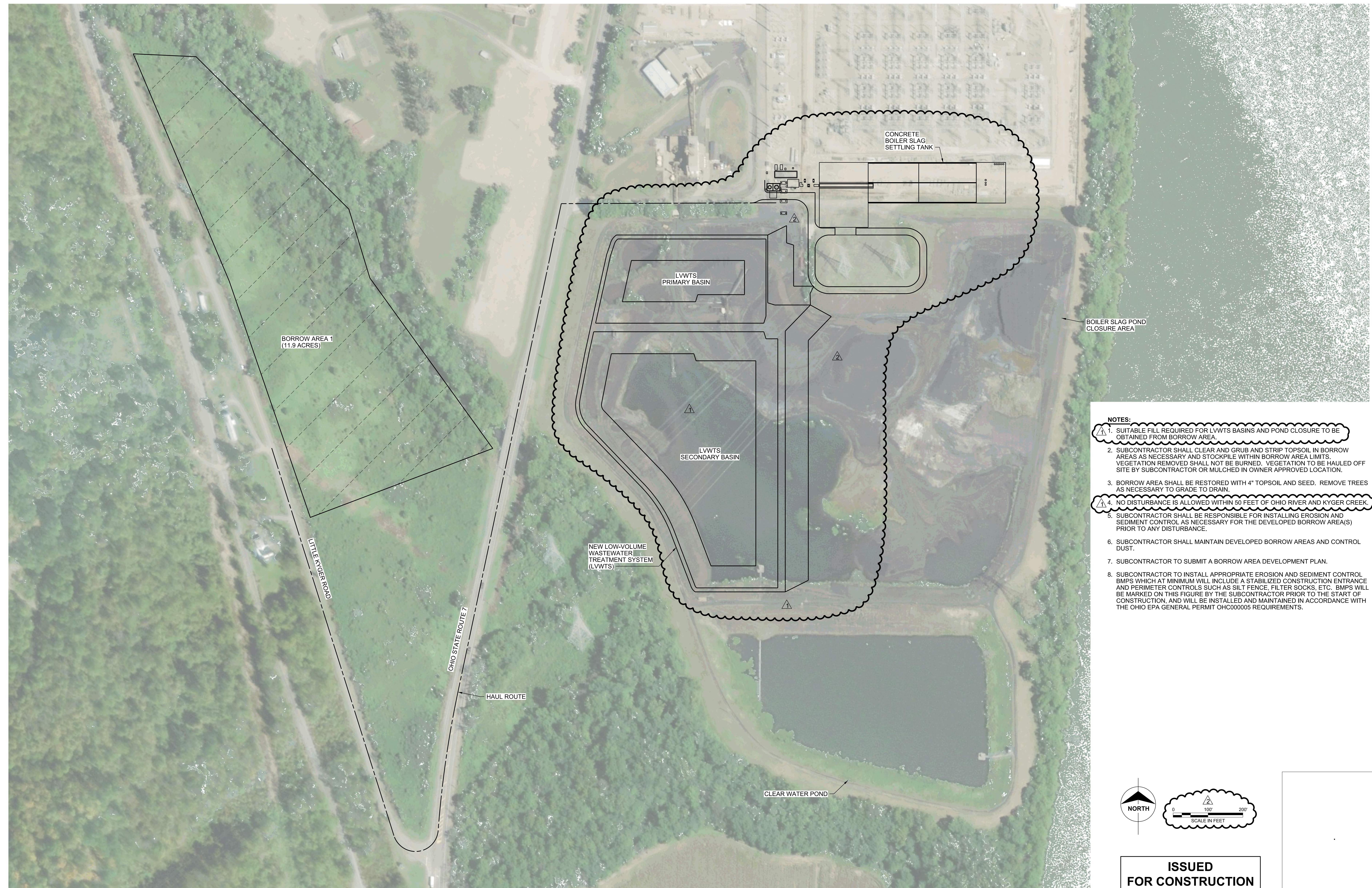
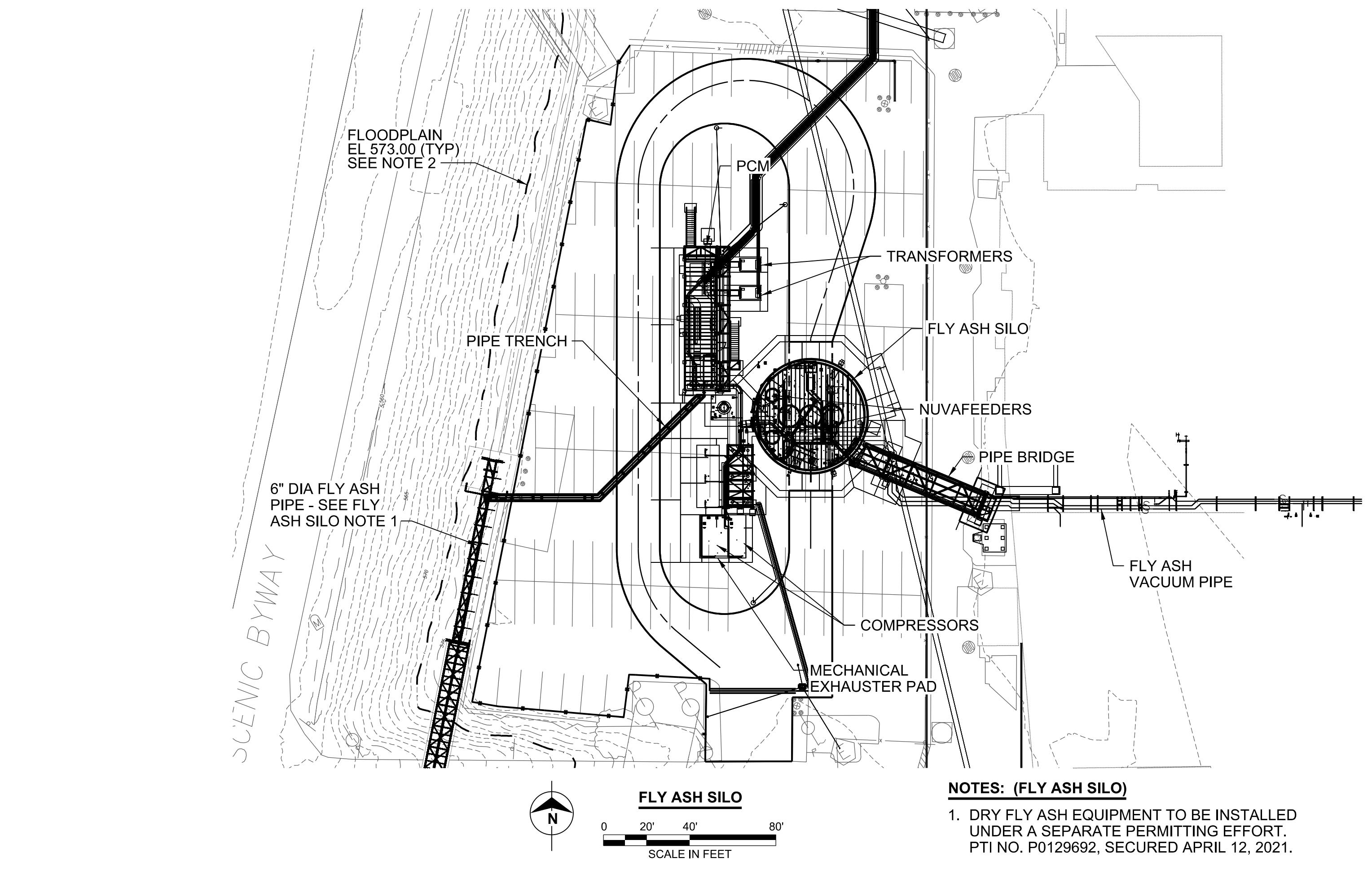
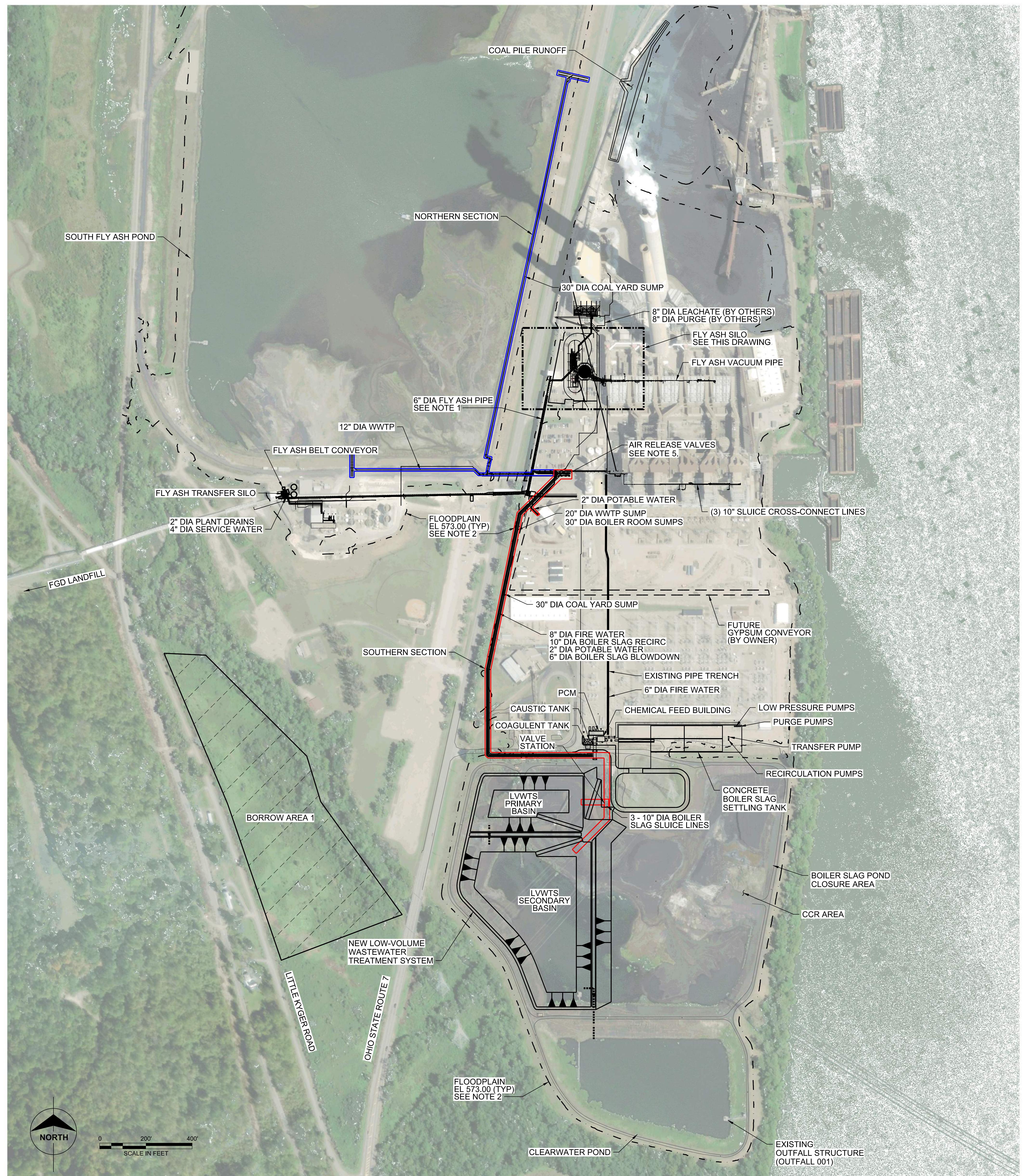

Client/Project
Ohio Valley Electric Corporation
South Fly Ash Pond

Figure No.
3
Title
2025 Annual CCR Surface Impoundment Inspection

Point ID No.	Photo ID No.	Comment	Latitude	Longitude	Location
1	1	Northwest Exterior Slope – Erosion gully near the toe.	38.912966	-82.133584	LVWTS Primary Basin
2	2	Northwest Exterior Slope – Minor depression mid-slope.	38.912514	-82.134292	LVWTS Primary Basin
3	4	Northwest Exterior Slope – Surface erosion, bare spots near crest.	38.912066	-82.134700	LVWTS Secondary Basin
4	5	Northwest Exterior Slope – Erosion gully, bare area near crest.	38.911797	-82.135076	LVWTS Secondary Basin
5	6	West Exterior Slope – Equipment tracks, exposed earth.	38.911571	-82.135135	LVWTS Secondary Basin
6	8	West Exterior Slope – Bare spot near the toe.	38.910241	-82.135022	BSP
7	10	Southeast Exterior Slope – Drainage direction at toe unclear.	38.907904	-82.132386	Clearwater Pond
8	12	Southwest slope of Splitter Dike – Erosion gully.	38.909332	-82.133617	BSP
9	16	Southeast Exterior Slope – Surface erosion on slope, bare spots.	38.910220	-82.130159	BSP
10	19	Northeast Interior Slope – Erosion gully near the crest.	38.911381	-82.130532	BSP
11	22	Northwest Exterior Slope – 1-foot-deep erosion rill near toe.	38.921491	-82.132274	SFAP
12	23	Northwest Exterior Slope – Depression in lower half of slope.	38.921344	-82.132160	SFAP
13	23	Northwest Exterior Slope – Depression in lower half of slope.	38.920916	-82.132454	SFAP
14	25	Northwest Exterior Slope – Erosion gully, bare spots.	38.921032	-82.132619	SFAP
15	26	Northwest Exterior Slope – Surface erosion, bare spots.	38.920479	-82.132819	SFAP
16	27	Northwest Exterior Slope – Depression in lower half of slope.	38.920081	-82.133267	SFAP
17	27	Northwest Exterior Slope – Depression in lower half of slope.	38.919798	-82.133657	SFAP
18	28	Northwest Exterior Slope – Depression in lower half of slope.	38.919248	-82.133973	SFAP
19	29	Northwest Exterior Slope – Surface erosion, bare spots.	38.918391	-82.134506	SFAP
20	30	Northwest Crest – Instrumentation well lid missing bolts.	38.918193	-82.134501	SFAP
21	31	West Exterior Slope – Surface erosion, bare spots at access ramp.	38.917727	-82.134484	SFAP
22	32	West Crest – Damaged well lid on instrumentation.	38.917654	-82.134392	SFAP
23	33	West Crest Slope – Well lid buried.	38.916367	-82.132034	SFAP
24	36	Southeast Exterior Slope – Animal burrow.	38.917346	-82.128992	SFAP
25	37	Southeast Exterior Slope – Erosion under pipes.	38.917456	-82.129107	SFAP
26	38	Southeast Exterior Slope – Surface erosion, bare spots.	38.918351	-82.127972	SFAP
27	39	Southeast Exterior Slope – Erosion gully on crest and slope.	38.918971	-82.127152	SFAP
28	40	Southeast Exterior Slope – Animal burrow.	38.919955	-82.125925	SFAP
29	42	Splitter Dike Crest – Well lid under steel plate.	38.922076	-82.130365	SFAP

APPENDIX B

Reference Drawings

2	06/27/22	NJF	DGK	ISSUED FOR CONSTRUCTION											
1	01/14/22	AMM	DGK	REVISED PER ODNR COMMENTS											
0	12/06/21	AMM	DGK	INITIAL ISSUE											
no.	date	by	ckd	description	no.	date	by	ckd	description	no.	date	by	ckd	description	no.

BURNS & MCDONNELL
9400 WARD PARKWAY
KANSAS CITY, MO 64114
816-333-9400
Burns & McDonnell Engineering Co., Inc.
Certificate of Authority No. 01557
designed by N. FORD | detailed by J. RIDDER

OVEC / IEC
Ohio Valley Electric Corporation Indiana-Kentucky Electric Corporation
KYGER CREEK GENERATING STATION
CCR/ELG PROJECT
GALLIA COUNTY, OHIO
drawing CG401 — rev. 2
sheet 1 of 1 sheets
file 126371CG401.DGN

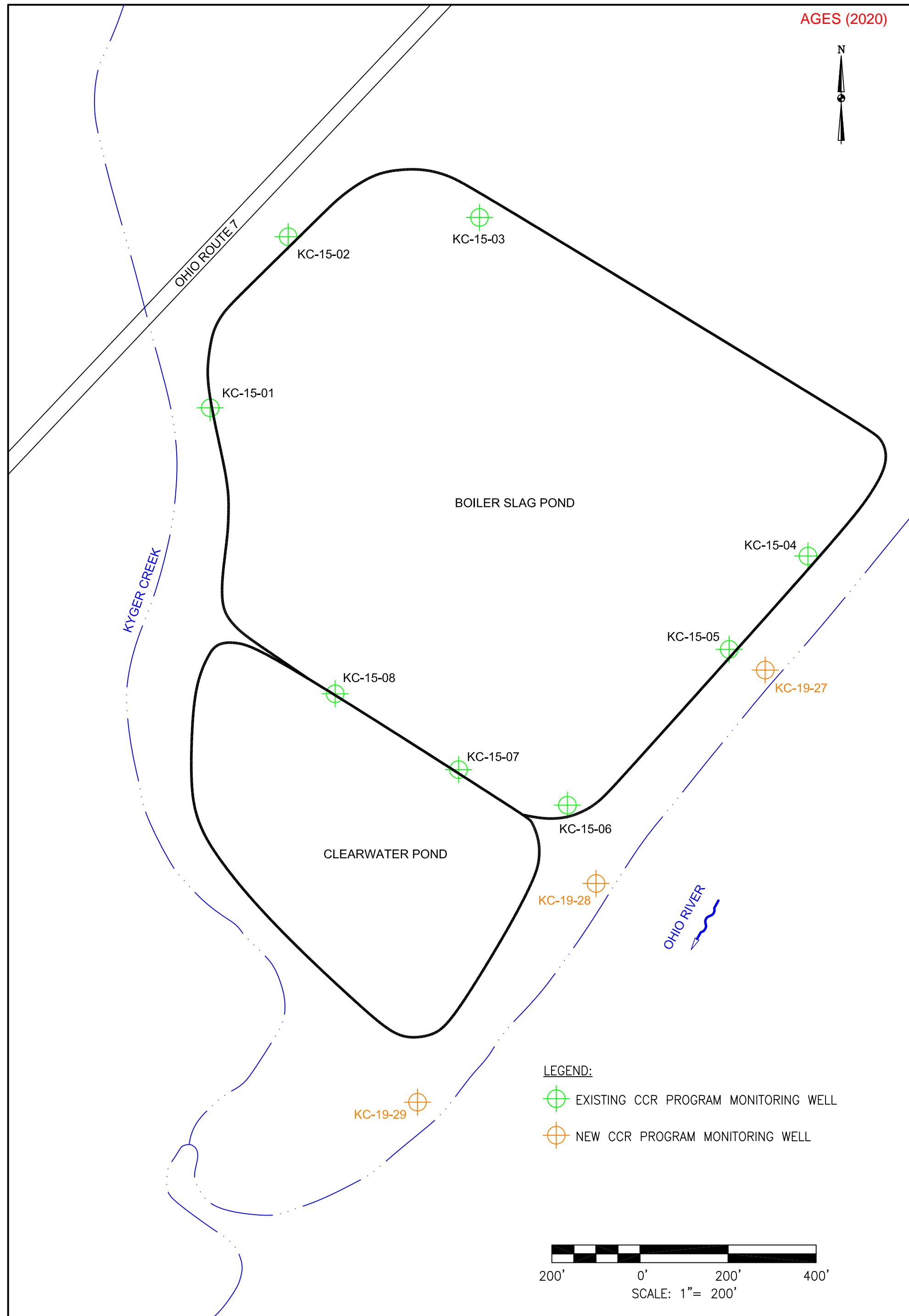
BORROW PLAN
project 126371 | contract 8125
drawing CG401 — rev. 2
sheet 1 of 1 sheets
file 126371CG401.DGN

NOTES:

- FLY ASH CONVEYING PIPE HUNG / SUPPORTED ON EXISTING GYPSUM CONVEYOR.
- FLOODPLAIN ELEVATION BASED ON 573.00 CONTOUR OF PLANT ELEVATION DATUM. FLOODPLAIN VARIES BETWEEN EL 571.60 AND EL 571.80 IN NAVD88.
- SITE PLAN INCLUDES SCOPE FROM MULTIPLE CONTRACTS.
- LOW VOLUME WASTEWATER STREAMS - RELOCATION KEY: (VALUES ARE AVERAGE FLOW)
 - 30" HDPE BOILER ROOM SUMP: 7014 GPM
 - 30" HDPE COAL YARD SUMP LINE: 131 GPM
 - 6" CS PRECIPITATOR SUMP LINE: 13 GPM
 - 3" CS BOILER SLAG RECYCLE TANK PURGE LINE: 159 GPM
 - 20" HDPE WASTEWATER TREATMENT PLANT SUMP LINE: 204 GPM
 - 2" HDPE FLY ASH TRANSFER SILO SUMP: 20 GPM
- AIR RELEASE VALVES AUTOMATICALLY OPEN DURING SYSTEM STARTUP AND OCCASIONALLY DURING NORMAL OPERATION TO ALLOW ENTRAPPED AIR TO ESCAPE THE PROCESS PIPING. DURING THIS OCCASIONAL RELEASE, A NEGIGLIBLE AMOUNT OF PROCESS WATER MAY ESCAPE THE VALVE AND BE RELEASED TO GRADE.

**ISSUED
FOR CONSTRUCTION**

9	04/29/22	NJF	DGK	ISSUED FOR CONSTRUCTION									
8	03/16/22	SRH	DGK	REVISED LOCATION OF BOILER SLAG SETTLING TANK, CHEMICAL TREATMENT EQUIPMENT, AND LVWTS BASINS - ISSUED FOR PERMITTING									
7	01/05/22	AMM	DGK	ISSUED FOR PERMITTING									
6	12/06/21	AMM	DGK	ISSUED FOR BID									
5	10/11/21	MEB	DGK	ISSUED FOR CONSTRUCTION	10	06/27/22	NJF	DGK	ISSUED FOR CONSTRUCTION				
no.	date	by	ckd	description	no.	date	by	ckd	description				


BURNS & MCDONNELL
9400 WARD PARKWAY
KANSAS CITY, MO 64114
816-333-9400
Burns & McDonnell Engineering Co., Inc.
Certificate of Authority No. 01557
designed by J. RIDDER

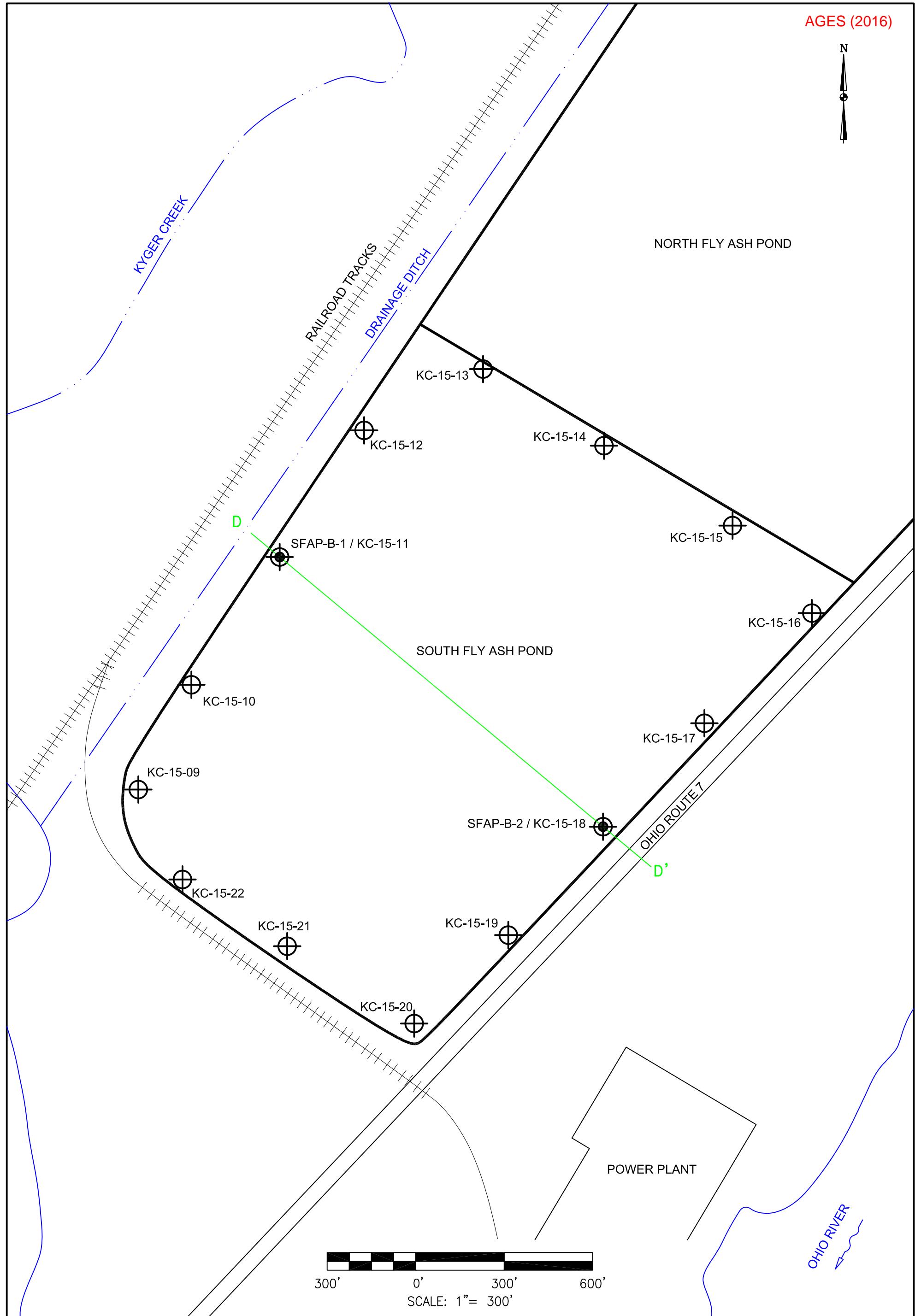
OVEC/KEC
Ohio Valley Electric Corporation Indiana-Kentucky Electric Corporation
KYGER CREEK GENERATING STATION
CCR/ELG PROJECT
GALLIA COUNTY, OHIO
drawing CS001 rev. 10
sheet 1 of 1 sheets
file 126371CS001.DGN

SITE PLAN
project 126371 contract MULTIPLE
drawing CS001 rev. 10
sheet 1 of 1 sheets
file 126371CS001.DGN

APPENDIX C

Instrumentation

DRAWN BY	JM
DATE	
CHECKED BY	
JOB NO.	2019109-1-KYGER
DWG FILE	2019 ACM_KYGER_Fig 5-1_BSP_MWs&SBs.dwg
DRAWING SCALE	1"=200'



AGES
Applied Geology And Environmental Science, Inc.
2402 Hookstown Grade Road, Suite 200
Clinton, PA 15026
412.264.6453

KYGER CREEK STATION
CHESHIRE, GALLIA COUNTY, OHIO
BOILER SLAG POND

EXISTING AND NEW MONITORING WELL LOCATIONS

DRAWING NAME	FIGURE 5-1	REV.
		0

LEGEND:
 SOIL BORING / MONITORING WELL LOCATION
 MONITORING WELL LOCATION

DRAWN BY JM
 DATE
 CHECKED BY
 JOB NO. 2015079-KYGER
 DWG FILE KYGER MW INSTALL_PONDS+MWs b11.dwg
 DRAWING SCALE 1"=300'

AGES
 Applied Geology And Environmental Science, Inc.
 2402 Hookstown Grade Road, Suite 200
 Clinton, PA 15026
 412.264.6453

OHIO VALLEY ELECTRIC COMPANY
 KYGER CREEK STATION
 CHESHIRE, GALLIA COUNTY, OHIO
 SOUTH FLY ASH POND
 SOIL BORING AND
 GROUNDWATER MONITORING WELL LOCATIONS
 DRAWING NAME FIGURE 7
 REV. 0

APPENDIX D

Photographic Log

///

Photo 1, Point 1

LVWTS – Northwest Exterior
Slope – Erosion gully near the
toe.

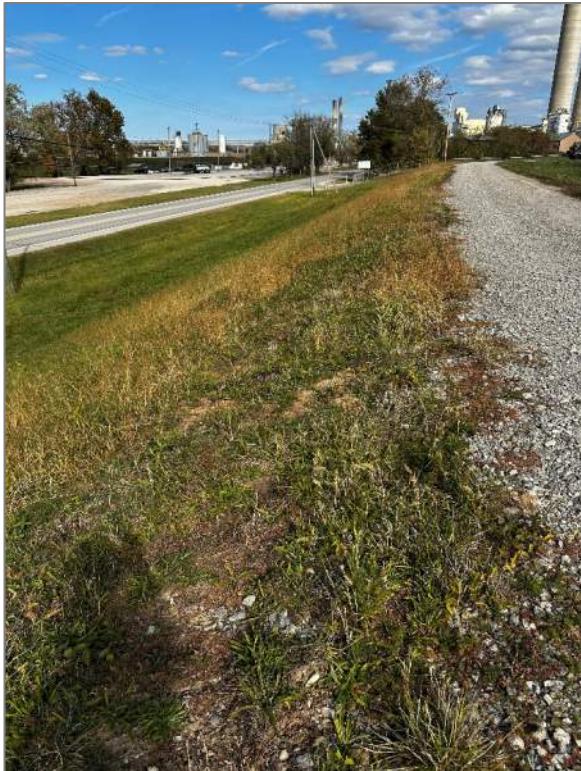


Photo 2, Point 2

LVWTS – Northwest Exterior
Slope – Minor depression mid-
slope.

**2025 CCR Rule Annual Inspection
Kyger Creek Station
Boiler Slag Pond
Photos**

Photo 3

LVWTS – Northwest Exterior
Slope – Surface erosion, bare
spots near the crest.

Photo 4, Point 3

LVWTS – Northwest Exterior
Slope – Surface erosion, bare
spots near the crest.

Photo 5, Point 4

LVWTS – Northwest Exterior Slope – Erosion gulley and bare area near the crest.

Photo 6, Point 5

LVWTS – West Exterior Slope – Equipment tracks, exposed earth.

**2025 CCR Rule Annual Inspection
Kyger Creek Station
Boiler Slag Pond
Photos**

Photo 7

LVWTS – West Exterior Slope facing south, trees on slope between embankment and Kyger Creek.

Photo 8, Point 6

Boiler Slag Pond – West Exterior Slope – Bare spot near the toe.

Photo 9

Clearwater Pond – Southwest
Exterior Slope, facing southeast

Photo 10, Point 7

Clearwater Pond – Southeast
Exterior Slope – Drainage
direction at toe unclear.

Photo 11

Clearwater Pond – Southwest slope of Splitter Dike facing northwest.

Photo 12, Point 8

Boiler Slag Pond – Southwest slope of Splitter Dike – Erosion gulley.

2025 CCR Rule Annual Inspection Kyger Creek Station Boiler Slag Pond Photos

Photo 13

Boiler Slag Pond – Facing east from Splitter Dike – Closure by removal construction in progress.

Photo 14

Clearwater Pond – Facing southeast from Splitter Dike

Photo 15
Boiler Slag Pond – Southeast
Exterior Slope – Erosion along
the crest.

Photo 16, Point 9
Boiler Slag Pond – Southeast
Exterior Slope – Surface erosion
on slope, bare spots.

Photo 17
Boiler Slag Pond – Southeast
Interior Slope – Erosion along
the crest.

Photo 18
Boiler Slag Pond – Southeast
Interior Slope – Erosion gully
near the crest.

Photo 19, Point 10
Boiler Slag Pond – Northeast
Interior Slope – Erosion gully
near the crest.

Photo 20
LVWTS – Primary (right) and
Secondary (left) Basins, facing
west.

**2025 CCR Rule Annual Inspection
Kyger Creek Station
South Fly Ash Pond
Photos**

Photo 21

Northwest Exterior Slope –
Facing southwest

Photo 22, Point 11

Northwest Exterior Slope –
1-foot-deep erosion rill near toe

Photo 23, Points 12-13
Northwest Exterior Slope –
Depression in lower half of
slope.

Photo 24
Impoundment – Facing
southeast

Photo 25, Point 14
Northwest Exterior Slope –
Erosion gulley, bare spots

Photo 26, Point 15
Northwest Exterior Slope –
Surface erosion, bare spots.

**2025 CCR Rule Annual Inspection
Kyger Creek Station
South Fly Ash Pond
Photos**

Photo 27, Points 16-17
Northwest Exterior Slope –
Depression in lower half of
slope. Facing southwest.

Photo 28, Point 18
Northwest Exterior Slope –
Depression in lower half of
slope. Facing northeast.

**2025 CCR Rule Annual Inspection
Kyger Creek Station
South Fly Ash Pond
Photos**

Photo 29, Point 19
Northwest Exterior Slope –
Surface erosion, bare spots.

Photo 30, Point 20
Northwest Crest –
Instrumentation well lid missing
bolts.

Photo 31, Point 21

West Exterior Slope – Surface erosion, bare spots at access ramp.

Photo 32, Point 22

West Crest – Damaged well lid on instrumentation.

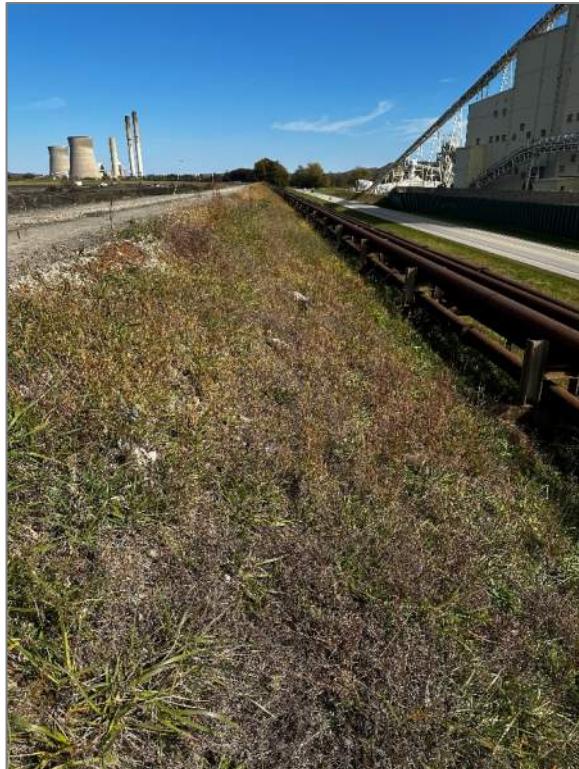

Photo 33, Point 23
West Crest Slope – Well lid
buried.

Photo 34
Southeast Exterior Slope –
Looking northeast.

**2025 CCR Rule Annual Inspection
Kyger Creek Station
South Fly Ash Pond
Photos**

Photo 35
Southeast Exterior Slope –
Looking northeast.

Photo 36, Point 24
Southeast Exterior Slope –
Animal burrow.

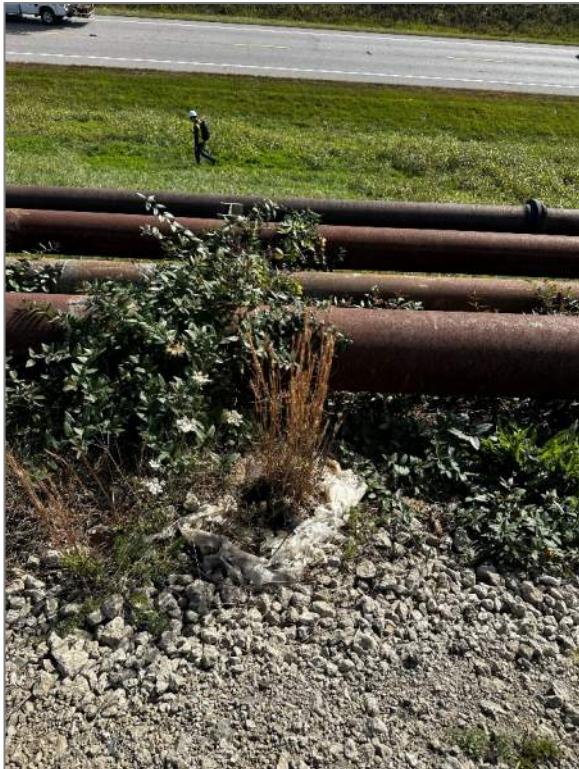

Photo 37, Point 25
Southeast Exterior Slope –
Erosion under pipes.

Photo 38, Point 26
Southeast Exterior Slope –
Surface erosion, bare spots.

**2025 CCR Rule Annual Inspection
Kyger Creek Station
South Fly Ash Pond
Photos**

Photo 39, Point 27
Southeast Exterior Slope –
Erosion gully on crest and
slope.

Photo 40, Point 28
Southeast Exterior Slope –
Animal burrow.

Photo 41

Splitter Dike Exterior Slope –
Facing northwest.

Photo 42, Point 29

Splitter Dike Crest – Well lid
under steel plate.